Growth Response and Recovery of Corynebacterium glutamicum Colonies on Single-Cell Level Upon Defined pH Stress Pulses

Author:

Täuber Sarah,Blöbaum Luisa,Wendisch Volker F.,Grünberger Alexander

Abstract

Bacteria respond to pH changes in their environment and use pH homeostasis to keep the intracellular pH as constant as possible and within a small range. A change in intracellular pH influences enzyme activity, protein stability, trace element solubilities and proton motive force. Here, the species Corynebacterium glutamicum was chosen as a neutralophilic and moderately alkali-tolerant bacterium capable of maintaining an internal pH of 7.5 ± 0.5 in environments with external pH values ranging between 5.5 and 9. In recent years, the phenotypic response of C. glutamicum to pH changes has been systematically investigated at the bulk population level. A detailed understanding of the C. glutamicum cell response to defined short-term pH perturbations/pulses is missing. In this study, dynamic microfluidic single-cell cultivation (dMSCC) was applied to analyze the physiological growth response of C. glutamicum to precise pH stress pulses at the single-cell level. Analysis by dMSCC of the growth behavior of colonies exposed to single pH stress pulses (pH = 4, 5, 10, 11) revealed a decrease in viability with increasing stress duration w. Colony regrowth was possible for all tested pH values after increasing lag phases for which stress durations w were increased from 5 min to 9 h. Furthermore, single-cell analyses revealed heterogeneous regrowth of cells after pH stress, which can be categorized into three physiological states. Cells in the first physiological state continued to grow without interruption after pH stress pulse. Cells in the second physiological state rested for several hours after pH stress pulse before they started to grow again after this lag phase, and cells in the third physiological state did not divide after the pH stress pulse. This study provides the first insights into single-cell responses to acidic and alkaline pH stress by C. glutamicum.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3