Wholegrain fermentation affects gut microbiota composition, phenolic acid metabolism and pancreatic beta cell function in a rodent model of type 2 diabetes

Author:

Costabile Adele,Corona Giulia,Sarnsamak Kittiwadee,Atar-Zwillenberg Daphna,Yit Chesda,King Aileen J.,Vauzour David,Barone Monica,Turroni Silvia,Brigidi Patrizia,Hauge-Evans Astrid C.

Abstract

The intestinal microbiota plays an important role in host metabolism via production of dietary metabolites. Microbiota imbalances are linked to type 2 diabetes (T2D), but dietary modification of the microbiota may promote glycemic control. Using a rodent model of T2D and an in vitro gut model system, this study investigated whether differences in gut microbiota between control mice and mice fed a high-fat, high-fructose (HFHFr) diet influenced the production of phenolic acid metabolites following fermentation of wholegrain (WW) and control wheat (CW). In addition, the study assessed whether changes in metabolite profiles affected pancreatic beta cell function. Fecal samples from control or HFHFr-fed mice were fermented in vitro with 0.1% (w/v) WW or CW for 0, 6, and 24 h. Microbiota composition was determined by bacterial 16S rRNA sequencing and phenolic acid (PA) profiles by UPLC-MS/MS. Cell viability, apoptosis and insulin release from pancreatic MIN6 beta cells and primary mouse islets were assessed in response to fermentation supernatants and selected PAs. HFHFr mice exhibited an overall dysbiotic microbiota with an increase in abundance of proteobacterial taxa (particularly Oxalobacteraceae) and Lachnospiraceae, and a decrease in Lactobacillus. A trend toward restoration of diversity and compositional reorganization was observed following WW fermentation at 6 h, although after 24 h, the HFHFr microbiota was monodominated by Cupriavidus. In parallel, the PA profile was significantly altered in the HFHFr group compared to controls with decreased levels of 3-OH-benzoic acid, 4-OH-benzoic acid, isoferulic acid and ferulic acid at 6 h of WW fermentation. In pancreatic beta cells, exposure to pre-fermentation supernatants led to inhibition of insulin release, which was reversed over fermentation time. We conclude that HFHFr mice as a model of T2D are characterized by a dysbiotic microbiota, which is modulated by the in vitro fermentation of WW. The differences in microbiota composition have implications for PA profile dynamics and for the secretory capacity of pancreatic beta cells.

Funder

Diabetes UK

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3