Bradyrhizobium diazoefficiens USDA 110 displays plasticity in the attachment phenotype when grown in different soybean root exudate compounds

Author:

Sandhu Armaan Kaur,Brown McKenzie Rae,Subramanian Senthil,Brözel Volker S.

Abstract

IntroductionBradyrhizobium diazoefficiens, a symbiotic nitrogen fixer for soybean, forms nodules after developing a symbiotic association with the root. For this association, bacteria need to move toward and attach to the root. These steps are mediated by the surface and phenotypic cell properties of bacteria and secreted root exudate compounds. Immense work has been carried out on nodule formation and nitrogen fixation, but little is known about the phenotype of these microorganisms under the influence of different root exudate chemical compounds (RECCs) or how this phenotype impacts the root attachment ability.MethodsTo address this knowledge gap, we studied the impact of 12 different RECCs, one commonly used carbon source, and soil-extracted solubilized organic matter (SESOM) on attachment and attachment-related properties of B. diazoefficiens USDA110. We measured motility-related properties (swimming, swarming, chemotaxis, and flagellar expression), attachment-related properties (surface hydrophobicity, biofilm formation, and attachment to cellulose and soybean roots), and surface polysaccharide properties (colony morphology, exopolysaccharide quantification, lectin binding profile, and lipopolysaccharide profiling).Results and discussionWe found that USDA 110 displays a high degree of surface phenotypic plasticity when grown on the various individual RECCs. Some of the RECCs played specific roles in modulating the motility and root attachment processes. Serine increased cell surface hydrophobicity and root and cellulose attachment, with no EPS formed. Gluconate and lactate increased EPS production and biofilm formation, while decreasing hydrophobicity and root attachment, and raffinose and gentisate promoted motility and chemotaxis. The results also indicated that the biofilm formation trait on hydrophilic surfaces (polystyrene) cannot be related to the attachment ability of Bradyrhizobium to the soybean root. Among the tested phenotypic properties, bacterial cell surface hydrophobicity was the one with a significant impact on root attachment ability. We conclude that USDA 110 displays surface plasticity properties and attachment phenotype determined by individual RECCs from the soybean. Conclusions made based on its behavior in standard carbon sources, such as arabinose or mannitol, do not hold for its behavior in soil.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3