Enhanced probiotic potential of Lactobacillus kefiranofaciens OSU-BDGOA1 through co-culture with Kluyveromyces marxianus bdgo-ym6

Author:

González-Orozco Brianda D.,Kosmerl Erica,Jiménez-Flores Rafael,Alvarez Valente B.

Abstract

IntroductionDue to the increasing consumer demand for the development and improvement of functional foods containing probiotics, new probiotic candidates need to be explored as well as novel means to enhance their beneficial effects. Lactobacillus kefiranofaciens OSU-BDGOA1 is a strain isolated from kefir grains that has demonstrated probiotic traits. This species is the main inhabitant of kefir grains and is responsible for the production of an exopolysaccharide (EPS) whit vast technological applications and potential bioactivities. Research has shown that interkingdom interactions of yeast and lactic acid bacteria can enhance metabolic activities and promote resistance to environmental stressors.MethodsComparative genomic analyses were performed to distinguish OSU-BDGOA1 from other strains of the same species, and the genome was mined to provide molecular evidence for relevant probiotic properties. We further assessed the cumulative effect on the probiotic properties of OSU-BDGOA1 and Kluyveromyces marxianus bdgo-ym6 yeast co-culture compared to monocultures.ResultsSurvival during simulated digestion assessed by the INFOGEST digestion model showed higher survival of OSU-BDGOA1 and bdgo-ym6 in co-culture. The adhesion to intestinal cells assessed with the Caco-2 intestinal cell model revealed enhanced adhesion of OSU-BDGOA1 in co-culture. The observed increase in survival during digestion could be associated with the increased production of EPS during the late exponential and early stationary phases of co-culture that, by enhancing co-aggregation between the yeast and the bacterium, protects the microorganisms from severe gastrointestinal conditions as observed by SEM images. Immune modulation and barrier function for recovery and prevention of flagellin-mediated inflammation by Salmonella Typhimurium heat-killed cells (HKSC) in Caco-2 cells were also measured. OSU-BDGOA1 in mono- and co-culture regulated inflammation through downregulation of pro-inflammatory cytokine expression and increased membrane barrier integrity assessed by TEER, FD4 permeability, and expression of tight junctions.DiscussionThe results of the study warrant further research into the application of co-cultures of yeast and LAB in functional probiotic products and the potential to increase EPS production by co-culture strategies.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3