Efficacy of Povidone Iodine Against Microbial Biofilms in Breast Implants With Different Textures: Results From an in vitro Study

Author:

Fernández-Ibarburu Borja,Díaz-Navarro Marta,Ibarra Gorka,Rivera Andrés,Hafian Rama,Irigoyen Ãlvaro,Carrillo Raquel,Pérez-Cano Rosa,Muñoz Patricia,García-Ruano Ángela,Lasso José M.,Guembe María

Abstract

BackgroundIn the practice of breast augmentation and reconstruction, implant irrigation with various solutions has been widely used to prevent infection and capsular contracture, but to date, there is no consensus on the optimal protocol to use. Recently, application of povidone iodine (PI) for 30 min has shown in vitro to be the most effective irrigating formula in reducing contamination in smooth breast implants. However, as 30 min is not feasible intraoperatively, it is necessary to determine whether shorter times could be equally effective as well as to test it in both smooth and textured implants.MethodsWe tested the efficacy of 10% PI at 1′, 3′, and 5′ against biofilms of 8 strains (2 ATCC and 6 clinical) of Staphylococcus spp. on silicone disks obtained from Mentor® and Polytech® implants of different textures. We analyzed the percentage reduction of cfu counts, cell viability and bacterial density between treatment (PI) and control (sterile saline, SS) groups for each time of application. We consider clinical significance when > 25% reduction was observed in cell viability or bacterial density.ResultsAll textured implants treated with PI at any of the 3 exposure times reduced 100% bacterial load by culture. However, none of the implants reached enough clinical significance in percentage reduction of living cells. Regarding bacterial density, only 25–50 μm Polytxt® Polytech® implants showed significant reduction at the three PI exposure times.ConclusionPI is able to inhibit bacterial growth applied on the surface of breast implants regardless of the exposure time. However, no significant reduction on living cells or bacterial density was observed. This lack of correlation may be caused by differences in texture that directly affect PI absorption.

Funder

Instituto de Salud Carlos III

Consejería de Educación, Juventud y Deporte, Comunidad de Madrid

Fundación Mutua Madrileña

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3