Author:
Wang Yuting,Ye Qing,Sun Yujun,Jiang Yulu,Meng Bo,Du Jun,Chen Jingjing,Tugarova Anna V.,Kamnev Alexander A.,Huang Shengwei
Abstract
Biotransformation of selenite by microorganisms is an effective detoxification (in cases of dissimilatory reduction, e.g., to Se0) and assimilation process (when Se is assimilated by cells). However, the current knowledge of the molecular mechanism of selenite reduction remains limited. In this study, a selenite-resistant bacterium was isolated and identified as Proteus sp. YS02. Strain YS02 reduced 93.2% of 5.0 mM selenite to selenium nanoparticles (SeNPs) within 24 h, and the produced SeNPs were spherical and localized intracellularly or extracellularly, with an average dimension of 140 ± 43 nm. The morphology and composition of the isolated and purified SeNPs were characterized using dynamic light scattering (DLS), scanning electron microscopy (SEM) with energy-dispersive X-ray (EDX) spectrometry, and Fourier transform infrared (FTIR) spectroscopy. FTIR spectroscopy indicated the presence of proteins, polysaccharides, and lipids on the surface of the isolated SeNPs. Furthermore, the SeNPs showed excellent antimicrobial activity against several Gram-positive and Gram-negative pathogenic bacteria. Comparative transcriptome analysis was performed to elucidate the selenite reduction mechanism and biosynthesis of SeNPs. It is revealed that 197 genes were significantly upregulated, and 276 genes were significantly downregulated under selenite treatment. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that genes associated with ABC transporters, sulfur metabolism, pentose phosphate pathway (PPP), and pyruvate dehydrogenase were significantly enhanced, indicating selenite is reduced by sulfite reductase with PPP and pyruvate dehydrogenase supplying reducing equivalents and energy. This work suggests numerous genes are involved in the response to selenite stress, providing new insights into the molecular mechanisms of selenite bioreduction with the formation of SeNPs.
Funder
Natural Science Foundation of Anhui Province
Russian Academy of Sciences
Subject
Microbiology (medical),Microbiology
Reference51 articles.
1. Selenium nanoparticles synthesized using an eco-friendly method: dye decolorization from aqueous solutions, cell viability, antioxidant, and antibacterial effectiveness;Al Jahdaly;J. Mater. Res. Technol.,2021
2. Selenium, selenoproteins, and heart failure: current knowledge and future perspective;Al-Mubarak;Curr. Heart Fail. Rep.,2021
3. Selenium transformation and selenium-rich foods;Chen;Food Biosci.,2021
4. Selenium in soils under climate change, implication for human health;El-Ramady,2015
5. Microbial transformations of selenium species of relevance to bioremediation;Eswayah;Appl. Environ. Microbiol.,2016
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献