Locally generated C3 regulates the clearance of Toxoplasma gondii by IFN-γ-primed macrophage through regulation of xenophagy

Author:

Liu Bo,Yan Yan,Wang Xiaoreng,Chen Nannan,Wu Jue

Abstract

Exogenous pathogen infection can induce autophagy in cells. Autophagy is essential for cell survival, development, and homeostasis. It not only regulates cell defense and stress, but also has a close relationship with innate and adaptive immunity. Complement is an important part of innate immunity, which could be activated by three approaches, including classic, alternative, and lectin pathways. All the three pathways result in the activation of C3, and generate anaphylatoxin fragments C3a and C5a, and formation of the membrane attack complex. Either C3a or C5a induces the inflammatory cytokines through binding to C3aR or C5aR, respectively. However, it is still unknown whether the complement could regulate the autophagy of intracellular microorganisms or not. In this study, we constructed a Toxoplasma gondii (T. gondii) and macrophages co-culture experimental model using T. gondii expressing enhanced green fluorescence protein (EGFP) fluorescence and C3−/-C57BL/6 J mice for that T. gondii invaded peritoneal macrophages in mice. Western blot, laser confocal microscopy (LCM), and transmission electron microscopy (TEM) were used to observe the changes of autophagy between the macrophages from wild-type (WT) and C3−/− mice. Flow cytometry and LCM were used to investigate the effect of autophagy on the killing ability of macrophages against T. gondii. Here, we found that local C3 could suppress not only the canonical autophagy of macrophage, but also the xenophagy to T. gondii. Interestingly, the inhibition of C3 on host cell autophagy could significantly suppress the clearance of T. gondii by the IFN-γ-primed macrophage. Finally, we investigated the mechanism of the autophagy regulation of C3 that the effect of C3 on the macrophage-specific autophagy against T. gondii depends on mTOR. And, there is C3a but not C5a/C5aR involved in regulating macrophage xenophagy against T. gondii. Collectively, our findings suggest locally generated C3 regulates the clearance of T. gondii by Macrophage through the regulation of the non-canonical IFN-γ-dependent autophagy pathway, and paint a clearer picture in the regulation of autophagy by innate immune components.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3