A Sensorless Modular Multiobjective Control Algorithm for Left Ventricular Assist Devices: A Clinical Pilot Study

Author:

Maw Martin,Schlöglhofer Thomas,Marko Christiane,Aigner Philipp,Gross Christoph,Widhalm Gregor,Schaefer Anne-Kristin,Schima Michael,Wittmann Franziska,Wiedemann Dominik,Moscato Francesco,Kudlik D'Anne,Stadler Robert,Zimpfer Daniel,Schima Heinrich

Abstract

BackgroundContemporary Left Ventricular Assist Devices (LVADs) mainly operate at a constant speed, only insufficiently adapting to changes in patient demand. Automatic physiological speed control promises tighter integration of the LVAD into patient physiology, increasing the level of support during activity and decreasing support when it is excessive.MethodsA sensorless modular control algorithm was developed for a centrifugal LVAD (HVAD, Medtronic plc, MN, USA). It consists of a heart rate-, a pulsatility-, a suction reaction—and a supervisor module. These modules were embedded into a safe testing environment and investigated in a single-center, blinded, crossover, clinical pilot trial (clinicaltrials.gov, NCT04786236). Patients completed a protocol consisting of orthostatic changes, Valsalva maneuver and submaximal bicycle ergometry in constant speed and physiological control mode in randomized sequence. Endpoints for the study were reduction of suction burden, adequate pump speed and flowrate adaptations of the control algorithm for each protocol item and no necessity for intervention via the hardware safety systems.ResultsA total of six patients (median age 53.5, 100% male) completed 13 tests in the intermediate care unit or in an outpatient setting, without necessity for intervention during control mode operation. Physiological control reduced speed and flowrate during patient rest, in sitting by a median of −75 [Interquartile Range (IQR): −137, 65] rpm and in supine position by −130 [−150, 30] rpm, thereby reducing suction burden in scenarios prone to overpumping in most tests [0 [−10, 2] Suction events/minute] in orthostatic upwards transitions and by −2 [−6, 0] Suction events/min in Valsalva maneuver. During submaximal ergometry speed was increased by 86 [31, 193] rpm compared to constant speed for a median flow increase of 0.2 [0.1, 0.8] L/min. In 3 tests speed could not be increased above constant set speed due to recurring suction and in 3 tests speed could be increased by up to 500 rpm with a pump flowrate increase of up to 0.9 L/min.ConclusionIn this pilot study, safety, short-term efficacy, and physiological responsiveness of a sensorless automated speed control system for a centrifugal LVAD was established. Long term studies are needed to show improved clinical outcomes.Clinical Trial RegistrationClinicalTrials.gov, identifier: NCT04786236.

Funder

Medtronic

Publisher

Frontiers Media SA

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3