Aldehyde dehydrogenase 2 and NOD-like receptor thermal protein domain associated protein 3 inflammasome in atherosclerotic cardiovascular diseases: A systematic review of the current evidence

Author:

Shi Xue-yun,Yue Xiao-lin,Xu You-shun,Jiang Mei,Li Rui-jian

Abstract

Inflammation and dyslipidemia underlie the pathological basis of atherosclerosis (AS). Clinical studies have confirmed that there is still residual risk of atherosclerotic cardiovascular diseases (ASCVD) even after intense reduction of LDL. Some of this residual risk can be explained by inflammation as anti-inflammatory therapy is effective in improving outcomes in subjects treated with LDL-lowering agents. NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome activation is closely related to early-stage inflammation in AS. Aldehyde dehydrogenase 2 (ALDH2) is an important enzyme of toxic aldehyde metabolism located in mitochondria and works in the metabolism of toxic aldehydes such as 4-HNE and MDA. Despite studies confirming that ALDH2 can negatively regulate NLRP3 inflammasome and delay the development of atherosclerosis, the mechanisms involved are still poorly understood. Reactive Oxygen Species (ROS) is a common downstream pathway activated for NLRP3 inflammasome. ALDH2 can reduce the multiple sources of ROS, such as oxidative stress, inflammation, and mitochondrial damage, thereby reducing the activation of NLRP3 inflammasome. Further, according to the downstream of ALDH2 and the upstream of NLRP3, the molecules and related mechanisms of ALDH2 on NLRP3 inflammasome are comprehensively expounded as possible. The potential mechanism may provide potential inroads for treating ASCVD.

Funder

Shandong Province Natural Science Foundation

Publisher

Frontiers Media SA

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3