Quantification of gas, ash, and sulphate aerosols in volcanic plumes from open path Fourier transform infrared (OP-FTIR) emission measurements at Stromboli volcano, Italy

Author:

Smekens Jean-François,Mather Tamsin A.,Burton Mike R.,La Spina Alessandro,Kabbabe Khristopher,Esse Benjamin,Varnam Matthew,Grainger Roy G.

Abstract

Field-portable Open Path Fourier Transform Infrared (OP-FTIR) spectrometers can be used to remotely measure the composition of volcanic plumes using absorption spectroscopy, providing invaluable data on total gas emissions. Quantifying the temporal evolution of gas compositions during an eruption helps develop models of volcanic processes and aids in eruption forecasting. Absorption measurements require a viewing geometry which aligns infrared source, plume, and instrument, which can be challenging. Here, we present a fast retrieval algorithm to estimate quantities of gas, ash and sulphate aerosols from thermal emission OP-FTIR measurements, and the results from two pilot campaigns on Stromboli volcano in Italy in 2019 and 2021. We validate the method by comparing time series of SO2 slant column densities retrieved using our method with those obtained from a conventional UV spectrometer, demonstrating that the two methods generally agree to within a factor of 2. The algorithm correctly identifies ash-rich plumes and gas bursts associated with explosions and quantifies the mass column densities and particle sizes of ash and sulphate aerosols (SA) in the plume. We compare the ash sizes retrieved using our method with the particle size distribution (PSD) of an ash sample collected during the period of measurements in 2019 by flying a Remotely Piloted Aircraft System into the path of a drifting ash plume and find that both modes of the bimodal PSD (a fine fraction with diameter around 5–10 μm and a coarse fraction around 65 μm) are identified within our datasets at different times. We measure a decrease in the retrieved ash particle size with distance downwind, consistent with settling of larger particles, which we also observed visually. We measure a decrease in the SO2/SA ratio as the plume travels downwind, coupled with an increase in measured SA particle size (range 2–6 μm), suggesting rapid hygroscopic particle growth and/or SO2 oxidation. We propose that infrared emission spectroscopy can be used to examine physical and chemical changes during plume transport and opens the possibility of remote night-time monitoring of volcanic plume emissions. These ground-based analyses may also aid the refinement of satellite-based aerosol retrievals.

Funder

Natural Environment Research Council

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3