Rapid Primary Sulfate Aerosol Generation Observed With OP‐FTIR in the Eruptive Plume of the Fagradalsfjall Basaltic Eruption, Iceland, 2021

Author:

Smekens Jean‐François12ORCID,Mather Tamsin A.1ORCID,Burton Mike R.34ORCID,Varnam Matthew35ORCID,Pfeffer Melissa A.6ORCID

Affiliation:

1. Department of Earth Sciences University of Oxford Oxford UK

2. Department of Astronomy and Planetary Science Northern Arizona University Flagstaff AZ USA

3. Department of Earth and Environmental Sciences University of Manchester Manchester UK

4. National Institute of Geophysics and Volcanology INGV Catania Italy

5. Lunar and Planetary Laboratory University of Arizona Tucson AZ USA

6. Icelandic Meteorological Office Reykjavík Iceland

Abstract

AbstractOpen‐Path Fourier‐Transform Infrared (OP‐FTIR) absorption spectroscopy is a powerful method for remote characterization of volcanic plume composition from safe distances. Many studies have used it to examine the composition of volcanic gas emitted at the surface, which is influenced by initial volatile contents and magma ascent/storage processes, and help to reveal the dynamics controlling surface activity. However, to evaluate the health hazard threats associated with volcanic emissions and their potential impact on wider atmospheric conditions, near‐source particle measurements are also key. Here we present a forward model and fitting algorithm which allows quantification of particle size and abundance. This was successfully applied to radiometrically uncalibrated OP‐FTIR spectra collected with a highly dynamic radiation source during the Fagradalsfjall eruption, Iceland, on 11 August 2021. Quantification of plume temperatures ranging from 350 to 650 K was essential to characterize the emission‐absorption behavior of SO2, enabling retrievals of particulate matter in the thermal infrared spectral window (750–1250 cm−1) in each spectrum. For the first time, we observe the rapid formation of primary aerosols in young plumes (only a few seconds old) with OP‐FTIR. Temperature‐dependent SO2/SO42− molar ratios range from 100 to 250, consistent with a primary formation mechanism controlled by cooling and entrainment of atmospheric gases. This novel aerosol spectrum retrieval opens new frontiers in field‐based measurements of sulfur partitioning and volcanic plume evolution, with the potential to improve volcano monitoring and quantification of air quality hazard assessments.

Funder

Natural Environment Research Council

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3