Updated geostrophic circulation and volume transport from satellite data in the Southern Ocean

Author:

Vargas-Alemañy Juan A.,Vigo M. Isabel,García-García David,Zid Ferdous

Abstract

Introduction: A geodetic estimation of the surface geostrophic currents can be obtained from satellite data by combining sea surface height measurements obtained from altimetry missions with geoid data from gravity missions. These surface geostrophic currents serve as a reference for inferring a comprehensive three-dimensional (3D) geostrophy by propagating them downwards using temperature and salinity profiles.Methods: In this work, we revisit this problem for the Southern Ocean, estimating the 3D geostrophy near full depth in 41 layers, with a 1° spatial resolution and monthly temporal resolution, covering the 12 years from 2004 to 2015. We analyze the obtained 3D geostrophy over the Southern Ocean region, where the Antarctic Circumpolar Current (ACC) and its several fronts are depicted, as well as other major currents such as the Agulhas Current, the Brazil-Malvinas Current, or the East Australian Current. From the 3D geostrophic currents, we also estimate the associated water volume transport (VT) and present the results for the ACC and the Drake Passage in the context of existing literature.Results: Our analysis yields a mean VT estimate of 15.9 ± 0.1 Sv per 1° cell within the ACC region and 149.2 ± 2.2 Sv for the Drake Passage ([60.5°S, 54.5°S] x [303.5°E]). Importantly, our study includes a comprehensive validation of the results. The spatial resolution of our space-data-based approach enables us to provide VT estimates for various paths followed in the different in situ campaigns at the Drake Passage, thereby validating our findings.Discussion: The analysis demonstrates a remarkable agreement across different measurement locations, reconciling the differences in estimates reported from different campaigns. Moreover, we have estimated the barotropic and baroclinic components of the currents and their associated VT.

Funder

Generalitat Valenciana

Ministerio de Ciencia e Innovación

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3