Capturing the Transport Variability of a Western Boundary Jet: Results from the Agulhas Current Time-Series Experiment (ACT)

Author:

Beal Lisa M.1,Elipot Shane1,Houk Adam1,Leber Greta M.1

Affiliation:

1. Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Abstract

AbstractThe volume transport of the Agulhas Current was measured over a 3-yr period by an array of seven current meter moorings and four current- and pressure-recording inverted echo sounders (CPIES) deployed at 34°S. CPIES extended the array farther offshore in order to capture, for the first time, the full Agulhas Current during meander events. Transports derived from CPIES are well correlated with overlapping current meter transports (0.89). The Eulerian mean current is 219 km wide and 3000 m deep, with peak surface speeds of 1.8 m s−1 and a weak northward undercurrent on the continental slope below 1200 m. A new algorithm to capture the western boundary jet transport at each time step T is defined as the poleward transport out to the first maximum of the vertically integrated velocity beyond the half-width of the mean jet. The mean transport of the Agulhas Current jet, so defined, is −84 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1) with a standard error of 2 Sv. Sampling and instrumental errors are explicitly estimated and amount to an additional 9 Sv. A more traditional estimate, based on net transport integrated to a fixed distance offshore Tbox, gives a mean transport of −77 ± 5 Sv. This transport is 10 Sv greater than an equivalent transport at 32°S, corresponding to a latitudinal increase equal to that predicted by Sverdrup dynamics. The time series of T and Tbox show important differences during solitary meander events and at longer time scales. In terms of an annual cycle, the Agulhas Current appears strongest during austral summer, a similar phase to the Gulf Stream and Kuroshio.

Publisher

American Meteorological Society

Subject

Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3