Deep-learning-based post-processing for probabilistic precipitation forecasting

Author:

Ji Yan,Zhi Xiefei,Ji Luying,Zhang Yingxin,Hao Cui,Peng Ting

Abstract

Ensemble prediction systems (EPSs) serve as a popular technique to provide probabilistic precipitation prediction in short- and medium-range forecasting. However, numerical models still suffer from imperfect configurations associated with data assimilation and physical parameterization, which can lead to systemic bias. Even state-of-the-art models often fail to provide high-quality precipitation forecasting, especially for extreme events. In this study, two deep-learning-based models—a shallow neural network (NN) and a deep NN with convolutional layers (CNN)—were used as alternative post-processing approaches to further improve the probabilistic forecasting of precipitation over China with 1–7 lead days. A popular conventional method—the censored and shifted gamma distribution-based ensemble model output statistics (CSG EMOS)—was used as the baseline. Re-forecasts run using a frozen EPS—Global Ensemble Forecast System version 12—were collected as the raw ensembles spanning from 2000 to 2019. The re-forecast data were generated once per day and consisted of one control run and four perturbed members. We used the calendar year 2018 as the validation period and 2019 as the testing period, and the remaining 18 years of data were used for training. According to the results, in terms of the continuous ranked probability score (CRPS) and the Brier score, the CNN model significantly outperforms the shallow NN model, as well as the CSG EMOS approach and the raw ensemble, especially for heavy or extreme precipitation events (those exceeding 50 mm/day). A remarkable degradation was seen when reducing the size of training samples from 18 years of data to two years. The spatial distribution of the CRPS shows that the stations in central China were better calibrated than those in other regions. With a lead time of 1 day, the CNN model was found to be superior to the other models (in terms of the CRPS) at 74.5% of the study stations. These results indicate that deep NNs can serve as a promising approach to the statistical post-processing of probabilistic precipitation forecasting.

Funder

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3