When Is a Barrier Island Not an Island? When It Is Preserved in the Rock Record

Author:

Mulhern Julia S.,Johnson Cari L.,Green Andrew N.

Abstract

Existing barrier island facies models are largely based on modern observations. This approach highlights the heterogeneous and dynamic nature of barrier island systems, but it overlooks processes tied to geologic time scales, such as multi-directional motion, erosion, and reworking, and their expressions as preserved strata. Accordingly, this study uses characteristic outcrop expressions from paralic strata of the Upper Cretaceous Straight Cliffs Formation in southern Utah to update models for barrier island motion and preservation to include geologic time-scale processes. Results indicate that the key distinguishing facies and architectural elements of preserved barrier island systems have very little to do with “island” morphology as observed in modern systems. Four facies associations are used to describe and characterize these barrier island architectural elements. Barrier islands occur in association with backbarrier fill (FA1) and internally contain lower and upper shoreface (FA2), proximal upper shoreface (FA3), and tidal channel facies (FA4). Three main architectural elements (barrier island shorefaces, shoreface-dominated inlet fill, and channel-dominated inlet fill) occur independently or in combination to create stacked barrier island deposits. Barrier island shorefaces record progradation, while shoreface-dominated inlet fill records lateral migration, and channel-dominated inlet fill records aggradation within the tidal inlet. Barrier islands are bound by lagoons or estuaries and are distinguished from other shoreface deposits by their internal facies and outcrop geometry, association with backbarrier facies, and position within transgressive successions. Tidal processes, in particular, tidal inlet migration and reworking of the upper shoreface, also distinguish barrier island successions. In sum, this study expands barrier island facies models and provides new recognition criteria to account for the complex geometries of time-transgressive, preserved barrier island deposits.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3