THE MORPHODYNAMICS AND SEDIMENTOLOGY OF A SEASONALLY CONTROLLED MICROTIDAL TIDAL INLET: THE NARIVA RIVER TIDAL INLET, COCOS BAY, TRINIDAD

Author:

Khan Saeed1,Wilson Brent12,Ramsook Ryan13,Vincent Hasley4

Affiliation:

1. 1 Department of Chemical Engineering, Petroleum Geoscience Unit, Faculty of Engineering, The University of the West Indies, St. Augustine, Trinidad and Tobago

2. 2 Cedar Lodge, Maenygroes Ceinewydd, Ceredigion SA45 9RL, Wales, U.K.

3. 3 Subsurface Department, Trinity Exploration and Production, Trinidad and Tobago

4. 4 Department of Earth Sciences, Dalhousie University, Life Sciences Centre, Halifax, Nova Scotia, B3H 4J1, Canada

Abstract

Abstract The geomorphology and sedimentology of the Nariva River tidal-inlet complex, a microtidal fluvially influenced tidal-inlet complex, was analyzed. The complex comprises a recurved spit, an ebb-tidal channel, and an ebb-tidal delta. Morphological trends in the spatio-temporal evolution of the inlet complex were observed and recorded from Google Earth™ timelapse satellite images taken from 2003 to 2019. The two-dimensional internal architecture of the inlet complex and the sedimentary succession of the recurved spit, an ebb spit, the swash platform (of the ebb-tidal delta), a mouth bar (associated with the wet-season river-dominated inlet complex erosion), the ebb-tidal channel, and the adjacent foreshore were observed and documented from six shallow sedimentary cores. The Nariva River inlet width ranges from 17 to 40 m through its seasonal evolution, has a tidal prism of ∼ 2.17 × 105 m3, a cross-sectional area of 29.52 m2, and a depth ∼ 1.4 m (calculated at peak dry season near the inlet throat). The inlet complex undergoes an annual geomorphological evolution linked to the seasonally induced migration of the fluvial-to-marine transition zone (FMTZ). Increased fluvial discharge during the wet and hurricane seasons results in the basinward migration of the FMTZ rendering the inlet river dominated and resulting in the erosion of the inlet complex. During the dry season, low fluvial discharge, tidal dominance, and fair-weather conditions promote sedimentation in the inlet and the redevelopment of the inlet complex. The inlet has a complex (CX) internal architecture (fill pattern) defined by the laterally migrating recurved spit and ebb spit on their updrift margin, and conformable, mounded elements on their downdrift (e.g., mouth bar, swash platform, and foreshore). Two sedimentary successions were developed for ebb-tidal-delta deposits: off-axis of the ebb-tidal channel and on-axis. The off-axis succession is considerably similar to the adjacent foreshore-to-shoreface succession which can pose a challenge when attempting to identify these deposits in the rock record. The on-axis succession, however, despite thickness variability, showed a positive correlation to studied mesotidal tide-dominated inlet successions.

Publisher

Society for Sedimentary Geology

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3