Syn-Eruptive Processes During the January–February 2019 Ash-Rich Emissions Cycle at Mt. Etna (Italy): Implications for Petrological Monitoring of Volcanic Ash

Author:

D’Oriano Claudia,Del Carlo Paola,Andronico Daniele,Cioni Raffaello,Gabellini Pietro,Cristaldi Antonio,Pompilio Massimo

Abstract

Low-intensity emission of volcanic ash represents the most frequent eruptive activity worldwide, spanning the whole range of magma compositions, from basalts to rhyolites. The associated ash component is typically characterized by heterogeneous texture and chemical composition, leading to misinterpretation of the role of syn-eruptive processes, such as cooling and degassing during magma ascent or even magma fragmentation. Despite their low intensity, the ash emission eruptions can be continuous for enough time to create problems to health and life networks of the communities all around the volcano. The lack of geophysical and/or geochemical precursor signals makes the petrological monitoring of the emitted ash the only instrument we have to understand the leading mechanisms and their evolution. Formation of low-level plumes related to ash-rich emissions has increasingly become a common eruptive scenario at Mt. Etna (Italy). In January–February 2019, an eruptive cycle of ash-rich emissions started. The onset of this activity was preceded on 24 December 2018 by a powerful Strombolian-like eruption from a fissure opened at the base of the New Southeast Crater. A lava flow from the same fissure and an ash-rich plume, 8–9 km high a.s.l., from the crater Bocca Nuova occurred concurrently. After about 4 weeks of intra-crater strombolian-like activity and strong vent degassing at summit craters, starting from 23 January 2019, at least four episodes of ash-rich emissions were recorded, mainly issued from the Northeast Crater. The episodes were spaced in time every 4–13 days, each lasting about 3–4 days, with the most intense phases of few hours. They formed weak plumes, up to 1 km high above the crater, that were rapidly dispersed toward different directions by dominant winds and recorded up to a distance of 30 km from the vent. By combining observations on the deposits with data on textural and chemical features of the ash components, we were able to discriminate between clasts originated from different crater sources and suggest an interpretive model for syn-eruptive processes and their evolution. Data indicate the occurrence of scarce (<10 vol.%) fresh juvenile material, including at least four groups of clasts with marked differences in microlite content and number density, and matrix glasses and minerals composition. Moreover, a large amount of non-juvenile clasts has been recognized, particularly abundant at the beginning of each episode. We propose that the low amount of juvenile ash results from episodic fast ascent of small magma batches from shallow reservoirs, traveling within a slow rising magma column subjected to cooling, degassing, and crystallization. The large number of non-juvenile clasts deriving from the thick crater infill of variably sealed or thermally altered material at the top of the magma column is suggested to contribute to the ash generation. The presence of a massive, granular crater infilling accumulating in the vent area may contribute to buffer the different geophysical signals associated with the active magma fragmentation process during the low-energy ash eruptions, as already evidenced at other volcanoes.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3