Volcanic Ash Classification Through Machine Learning

Author:

Benet Damià123ORCID,Costa Fidel1,Widiwijayanti Christina2

Affiliation:

1. Institut de Physique du Globe de Paris Université Paris Cité CNRS Paris France

2. EOS, Earth Observatory of Singapore Nanyang Technological University Singapore Singapore

3. Asian School of the Environment Nanyang Technological University Singapore Singapore

Abstract

AbstractVolcanic ash provides information that can help understanding the evolution of volcanic activity during the early stages of a crisis and possible transitions toward different eruptive styles. Ash consists of particles from a range of origins within the volcanic system and its analysis can be indicative of the processes driving the eruptive activity. However, classifying ash particles into different types is not straightforward. Diagnostic observations for particle classification are not standardized and vary across samples. Here we explore the use of machine learning (ML) to improve the classification accuracy and reproducibility. We use a curated database of ash particles (VolcAshDB) to optimize and train two ML‐based models: Extreme Gradient Boosting (XGBoost) that uses the measured physical attributes of the particles, from which predictions are interpreted by the SHapley Additive exPlanations (SHAP) method, and a Vision Transformer (ViT) that classifies binocular, multi‐focused, particle images. We find that the XGBoost has an overall classification accuracy of 0.77 (macro F1‐score), and specific features of color (hue_mean) and texture (correlation) are the most discriminant between particle types. Classification using the particle images and the ViT is more accurate (macro F1‐score of 0.93), with performances varying from 0.85 for samples of dome explosions, to 0.95 for phreatic and subplinian events. Notwithstanding the success of the classification algorithms, the training dataset is limited in number of particles, ranges of eruptive styles, and volcanoes. Thus, the algorithms should be tested further with additional samples, and it is likely that classification for a given volcano is more accurate than between volcanoes.

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3