Structural changes in silicate melt: A record from high-field strength elements in the Himalayan Cenozoic leucogranites

Author:

Gao Li-E.,Zeng Lingsen,Yan Lilong,Zhao Linghao,Wang Yaying

Abstract

Most Himalayan Cenozoic leucogranites are peraluminous magmas that have experienced various degrees of fractional crystallization. These leucogranites are characterized by relatively high degrees of heterogeneity in their elemental compositions. As the melt’s Zr/Hf ratio passes ∼20, there is an apparent change from positive to negative in the correlation between Zr (or Hf) and Zr/Hf ratio. As Nb/Ta ratio passes ∼5, Nb first decreases and then increases, but Ta first slowly increases and then drastically increases. Such systematic geochemical variations are related to changes in the dissolution behavior of key accessory phases, which are the consequence of silicate melt structural changes associated with fractional crystallization and. As a granitic magma evolves, changes in the melt structure as shown by changes in the compositional parameters (e.g., NBO/T, A/CNK, and M/F) as well as in Zr/Hf and Nb/Ta ratios. When the melt’s Zr/Hf and Nb/Ta ratio passes 20 and 5, respectively, NBO/T, M/F, and A/CNK first decrease and then increase; A/NK and C/NK first decrease and then become nearly constant; Na/K first becomes nearly constant and then increases. Moreover, a substantial change in the melt structure leads to a decrease in granitic viscosity, which in turn fractional crystallization of the granitic melts. Finally, such changes result in the mineralization of economically relevant rare elements in the Himalayan Cenozoic leucogranites.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Yangzhou City

National Key Research and Development Program of China

China Geological Survey

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference45 articles.

1. Evidence for early (>44 Ma) himalayan crustal thickening, Tethyan Himalaya, southeastern Tibet;Aikman;Earth Planet. Sci. Lett.,2008

2. Nb-Ta fractionation in peraluminous granites: A marker of the magmatic-hydrothermal transition;Ballouard;Geology,2016

3. Silicate melt structural relaxation: Rheology, kinetics, and Adam-Gibbs theory;Bottinga;Chem. Geol.,1996

4. Improvement of calculation method of melt depolymerization parameter NBO/T value and its application;Chen;Geol. Sci. Technol. Inf.,1986

5. A new model for zircon saturation in silicate melts;Crisp;Contrib. Mineral. Pet.,2022

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3