Fluid-fluxed melting in the Himalayan orogenic belt: Implications for the initiation of E-W extension in southern Tibet

Author:

Gao Li-E1,Zeng Lingsen1,Zhao Linghao2,Yan Lilong1,Hou Kejun3,Wang Qian3

Affiliation:

1. 1Research Center of Earth Science System, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China

2. 2National Research Center for Geoanalysis, Chinese Academy of Geological Sciences, Beijing 100037, China

3. 3Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China

Abstract

The geochemistry of granite is largely controlled by physical and chemical parameters that are closely linked to tectonic processes in evolving orogenic belts. Therefore, temporal changes in the geochemical compositions of granites could be used to infer critical shifts in tectonic processes. The Himalayan leucogranites are crustal anatexis products, providing a case to formulate petrogenetic models for granites and test tectonic models. From west to east, in the High Himalaya and the Tethyan Himalaya, two groups of leucogranites are derived from fluid-absent melting (Group A) and fluid-fluxed melting of muscovite (Group B), respectively. In the Cona and Mount Everest areas, Group B granites crystallized at 26−10 Ma, and Group A granites formed at 19−13 Ma. Group B granites have higher CaO, Sr, Ba, Zr, Hf, Th, Sr/Y, Zr/Hf, and Th/U, and lower Rb, Nb, Ta, U, Rb/Sr, and 87Sr/86Sr than those in Group A granites. These geochemical differences highlight the role of deep-origin fluids and the dissolution control of the accessory phases on the geochemical compositions in silicic magma systems. Field and microstructural observations show that E-W extension occurred synchronously with the granite intrusion derived from fluid-fluxed melting. Elevated heat flow accompanying the E-W extension could dehydrate hydrous minerals and release fluids from deep-seated crust (e.g., Lesser Himalayan Sequence). Such fluids could flux and melt the metasedimentary rocks within the High Himalaya and produce Group B granites. Together with literature data, from the Lhasa terrane to the Himalayan belt, E-W extensions in Tibet may have initiated as early as 26 Ma.

Publisher

Geological Society of America

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3