A step forward to understanding the development of volcanotectonic rifts: the structure of the Fremrinamar Fissure Swarm (Iceland)

Author:

Pedicini Martina,Bonali Fabio Luca,Corti Noemi,Pasquaré Mariotto Federico Aligi,Drymoni Kyriaki,Tibaldi Alessandro

Abstract

We analysed all the Holocene structures defining the Fremrinamar Fissure Swarm (FFS), in the Northern Volcanic Zone of Iceland, through the interpretation of aerial photos, orthomosaics and Digital Surface Models (DSMs), and field surveys. We measured the strike, dip, length and kinematics of 761 normal faults and reconstructed the slip profile of 76 main faults (length >2 km), with the purpose of evaluating the overall direction of along-axis rift propagation. We also measured the strike of 146 eruptive fissures and 1,128 extension fractures. A total of 421 faults dip towards the east and 340 dip towards the west, mainly striking N0°-10°E. Maximum fault length is 14.2 km, and W-dipping faults are longer than E-dipping faults. The majority of eruptive fissures strike N10°-20°E, and are concentrated in the southern part of the FFS, around the Fremrinamar central volcano. Extension fractures mainly strike N0°-10°E, with a maximum length of 2,508 m. We evaluated the variation of strike, fracture density and spacing along the FFS, and observed a change of its trend from NNE-SSW in the central-southern part, to NNW-SSE in the northern part. We interpret this evidence as the effect of the intersection with the Grimsey Lineament. The tapering of fault slip profiles indicates a main northward propagation of the rift, and thus of the deformation, interpreted as the effect of lateral propagation of dykes from the magma chamber below the central volcano towards the north. Such interpretation is also supported by the distribution of normal faults, vertical offset and dilation values, and also by the rift width, which tend to decrease towards the north.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3