Dyke to sill deflection in the shallow heterogeneous crust during glacier retreat: part II

Author:

Drymoni KyriakiORCID,Tibaldi Alessandro,Bonali Fabio Luca,Mariotto Federico Pasquarè

Abstract

AbstractChanges from dyke to sill propagation in the shallow crust are often caused by dissimilar layer properties. However, most previous studies have not considered the influence of glacial loading and unloading on dyke and sill deflection processes. Here, we attempt to collectively explore mechanical (layer stiffness) and geometrical (dyke dip, layer thickness) realistic parameters subject to two different magma overpressure values (namely 5 MPa and 10 MPa) that promote dyke-sill transitions in both non-glacial and glacial settings. To do this, we use as a field example, the Stardalur laccolith: a multiple stacked-sill intrusion located in SW Iceland. The laccolith lies near the retreating Langjökull glacier and was emplaced at the contact between a stiff lava layer and a soft hyaloclastite layer. We initially model two different stratigraphic crustal segments (stratigraphy a and b) and perform sensitivity analyses to investigate the likely contact opening due to the Cook-Gordon debonding and delamination mechanism under different loading conditions: magma overpressure, regional horizontal extension, glacial vertical load and a thin elastic layer at the stratigraphic contact. Our results show that contact opening (delamination) occurs in both non-glacial and glacial settings when the dissimilar mechanical contact is weak (low shear and tensile stress, zero tensile strength). In non-glacial settings, stiff layers (e.g., lavas) concentrate more tensile stress than soft layers (e.g., hyaloclastites/breccia) but accommodate less total (x–y) displacement than the surrounding host rock (e.g., soft hyaloclastites) in the vicinity of a dyke tip. Yet, a thicker hyaloclastite layer in the stratigraphy, subject to higher magma overpressure (Po = 10 MPa), may encourage dyke-sill transitions. Instead, in glacial domains, the stress conditions imposed by the variable vertical pressure of the ice cap result in higher tensile stress accumulation and displacement in stiff layers which they primarily control sill emplacement.

Funder

Università degli Studi di Milano - Bicocca

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3