A Review of the Global Polygonal Faults: Are They Playing a Big Role in Fluid Migration?

Author:

Xia Ying,Yang Jinxiu,Chen Yong,Lu Shuangfang,Wang Min,Deng Shaogui,Yao Zhiguang,Lu Mingyue

Abstract

Polygonal faults (PFs) have been widely found in over 100 sedimentary basins worldwide, mainly in marine setting on continental margins and intracratonic sedimentary basins. PFs are characterized by layer-bound minor normal faults arranged in polygonal patterns and multi-direction strikes, most of which were developed in fine-grained sediments rich in claystone. The genesis mechanisms of PFs have been recognized as non-tectonic, mainly including shear failure, syneresis, density inversion, low coefficients of friction and gravity sliding theory. Previous studies often regarded PFs as conduits playing a role in favouring fluid migration, which were also regarded as fluid source expelled during PF generation. However, some researchers proposed that the PF-bearing layer is generally impermeable and may act as a seal. To better understand the role of PFs in fluid migration and their contrition to the shallower hydrocarbon accumulation, a geophysical review of global PFs case studies is conducted in this paper. A comprehensive analysis is carried out based on abundant case studies, with key parameters analyzed including the PFs characteristics (e.g., buried depth, lithology, size, etc.), formation mechanisms of PFs, tectonic-sedimentary setting, and the spatial relationship of PFs, nearby major fluid migration pathways and high amplitude anomalies. The compilation of global PF case studies of shows that hydrocarbon fluids from the deep is more likely to migrate upward through normal big faults, gas chimneys or unconformities surface around PFs. In most cases, PFs play limited roles in fluid migration, such as in South China Sea where hydrocarbon accumulations have been observed under the PFs and the PF-bearing layer may act as a seal trapping the free gas underneath. Generally, the role of PFs in fluid migration should be determined through a comprehensive analysis of the characteristics of PFs, surrounding amplitude anomalies, hydrocarbon distribution, and even the sealing ability of PFs which needs further study. It is more likely that the PFs play a limited role in vertical fluid migration and related shallower hydrocarbon accumulation and distribution.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3