Affiliation:
1. Volcanic Basin Energy Research (VBER), Oslo, Norway
2. University of Oslo, Oslo, Norway
3. NGI, Oslo, Norway
4. TGS, Oslo, Norway
5. Université Laval, Québec, Canada
Abstract
Abstract
Along continental margins with rapid sedimentation, overpressure may build up in porous and compressible sediments. Large-scale release of such overpressure has major implications for fluid migration and slope stability. Here, we study if the widespread crater-mound-shaped structures in the subsurface along the mid-Norwegian continental margin are caused by overpressure that accumulated within high-compressibility oozes sealed by low-permeability glacial muds. We interpret 56 000 km
2
of 3D and 150 000 km
2
of 2D-cubed seismic data in the Norwegian Sea, combining horizon picking, well ties and seismic geomorphological analyses of the crater-mound landforms. Along the mid-Norwegian margin, the base of the glacially influenced sediments abruptly deepens to form 28 craters with typical depths of
c.
100 m, areal extents of up to 5130 km
2
and volumes of up to 820 km
3
. Mounds are observed in the vicinity of the craters at several stratigraphic levels above the craters. We present a new model for the formation of the craters and mounds where the mounds consist of remobilized oozes evacuated from the craters. In our model, repeated and overpressure-driven sediment failure is interpreted to cause the crater-mound structures, as opposed to erosive megaslides. Seismic geomorphological analyses suggest that ooze remobilization occurred as an abrupt energetic and extrusive process. The results also suggest that rapidly deposited, low-permeability and low-porosity glacial sediments seal overpressure that originated from fluids being expelled from the underlying high-permeability and high-compressibility biosiliceous oozes.
Publisher
Geological Society of London
Subject
Geology,Ocean Engineering,Water Science and Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献