Detection of suspended macroplastics using acoustic doppler current profiler (ADCP) echo

Author:

Boon Anouk,Buschman Frans A.,van Emmerik Tim H. M.,Broere Sophie,Vermeulen Bart

Abstract

Plastic pollution has become an enormous environmental problem, endangering ecosystems, livelihoods, safety and human health. Large quantities of plastics are trapped in or transported by rivers. Monitoring methods mostly focus on plastics floating at the surface or deposited on riverbanks, while a substantial part of plastics may be transported below the water surface. Available underwater monitoring methods rely on nets and large equipment, making them labour-intensive, expensive and invasive. The measurements are, therefore, limited to occasional point measurements. In this paper, we explore the potential of echo sounding for the monitoring of suspended macroplastic (plastic items bigger than 5 mm). We performed tests in a controlled (basin), a semi-controlled (harbour) and an uncontrolled (river) environment using the high-end Acoustic Doppler Current Profiler (ADCP). This device is already in use for the estimation of flow velocity and suspended sediment concentrations using the wide network of ADCPs in the Netherlands and other countries. In the undisturbed controlled environment, 25 items varying in size, material, and orientation could be detected up to at least 4.6 m from the ADCP. The semi-controlled experiments showed that most of these items can also be detected among other naturally occurring scatterers, such as aquatic life, organic material and air bubbles. The field tests under natural conditions, combining ADCP and net measurements, showed that ADCP data can be calibrated towards a correct order of magnitude estimate of plastic transport. The coupling of the ADCP data to item characteristics such as size, material and orientation is still challenging, but more research into, for example, the signature of items may enable distinguishing item characteristics. This fundamental knowledge, combined with repetitions of validated field measurements under different flow conditions, is needed for the development of a robust monitoring method. Such a method may enable continuous or cross-sectional monitoring of suspended plastics and give insight into historic and plastic transport through 30-year long datasets. These insights can help improve and determine the effect of current mitigation and cleaning efforts.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference30 articles.

1. Vertical and horizontal plastic litter distribution in a bend of a tidal river;Blondel;Front. Environ. Sci.,2022

2. Towards underwater macroplastic monitoring using echo sounding;Broere;Front. Earth Sci.,2021

3. Plastic in de waterkolom van de Boven-Rijn, Waal en IJssel;Collas;Verslagen Dierecologie en Fysiologie,2021

4. Backscatter estimation using broadband acoustic Doppler current profilers;Deines;Tech. Rep,1999

5. Message in a bottle: open source technology to track the movement of plastic pollution;Duncan;PL0S ONE,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3