Understanding the spatio-temporal behaviour of riverine plastic transport and its significance for flux determination: insights from direct measurements in the Austrian Danube River

Author:

Pessenlehner Sebastian,Gmeiner Philipp,Habersack Helmut,Liedermann Marcel

Abstract

Plastic pollution in aquatic environments is a growing concern, with rivers recognized as major pathways. However, rivers themselves are also subject to pollution. Hence, understanding riverine plastic transport dynamics is essential for mitigating environmental impacts. Although plastic-related research focus has shifted from marine environments towards rivers, challenges remain in standardizing methods for monitoring and integrating spatio-temporal variabilities of riverine plastic occurrence into flux determination. This study addresses these challenges by adopting established methods from sediment research. Utilizing data from a net-based cross-sectional multi-point approach, it examines spatio-temporal and discharge-dependent variations. It comprehensively analyzes the complex dynamics of plastic transport in the Danube River, contrasting an impounded section near Aschach, Austria, with a free-flowing reach near Hainburg, Austria. The paper emphasizes the significance of applying these methodologies for accurate flux determination and underscores the risks of neglecting them. By incorporating average microplastic particle weights, we aim to overcome limitations in prior methodologies that solely emphasize qualitative aspects or rely on item numbers. Spatial distribution analysis revealed a pronounced stratification at low flow and a more variable distribution in the free-flowing section, attributed to higher turbulence. As discharge increased, vertical mixing occurred, along with distinct lateral patterns displaying increased concentrations toward the riverbanks. Encountering plastic particles throughout the river profile underscores their properties of both suspended and floating matter, emphasizing the importance of hydro-morphology and multi-point cross-sectional measurement approaches. Microplastic loads were calculated to be <6.9 t a−1 in Aschach and <17.1 t a−1 in Hainburg, compared to total plastic loads of <14.3 t a−1 in Aschach and <41.6 t a−1 in Hainburg. Consequently, plastic loads were doubled to tripled within the Austrian section of the Danube River. The study contributes valuable insights into the complex nature of plastic transport in river systems, emphasizing comprehensive spatial, temporal and discharge-dependent assessments for characterizing and managing plastic pollution. It suggests that rivers can function as sources, pathways and sinks of plastic pollution, contingent upon hydro-morphological conditions. This underscores the need for longitudinal, basin-wide assessments to accurately understand plastic transport dynamics.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3