The necessary optimization of the data lifecycle: Marine geosciences in the big data era

Author:

Lee Taylor R.,Phrampus Benjamin J.,Obelcz Jeffrey

Abstract

In the marine geosciences, observations are typically acquired using research vessels to understand a given phenomenon or area of interest. Despite the plateauing of ship time and active research vessels in the last decade, the rate of marine geoscience data production has continued to increase. Simultaneously, there exists large quantities of legacy data aggregated within data repositories; however, these data are rarely curated to be both discoverable and machine-readable (i.e., accessible). This results in inefficient use, or even omission, of high-quality data, that is, both increasingly important to utilize and impractical to recollect. The proliferation of newly acquired data, and increasing importance of legacy data, has only been met with incremental evolution in the methods of data integration. This paper describes some improvements at each stage of the data lifecycle (acquisition, curation, and integration) that could align the marine geosciences better with the “big data” paradigm. We have encountered several major issues coordinating these efforts which we outline here: 1) geologic anomalies are the primary focus of data acquisition and pose difficulty in understanding the dominant (i.e., baseline) marine geology, 2) marine geoscience data are rarely curated to be accessible, and 3) aforementioned issues preclude the use of efficient integration tools that can make optimal use of data. In this paper, we discuss challenges and solutions associated with these issues to overcome these concerns in future decades of marine geoscience. The successful execution of these interconnected steps will optimize the lifecycle of marine geoscience data in the “big data” era.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference28 articles.

1. Cape Hatteras to the Mid-Atlantic Ridge – demultiplexing and archiving a unique multichannel seismic reflection data set;Agena;U.S. Geol. Surv. Open-File Rep.,1993

2. Guest editorial: Building global infrastructure for data sharing and exchange through the Research Data Alliance;Berman;D-Lib Mag.,2014

3. A machine learning tutorial for operational meteorology. Part I: Traditional machine learning;Chase;Weather Forecast.,2022

4. Counteracting systemic bias in the lab, field, and classroom;Cooperdock;AGU Adv.,2021

5. Earth's surface heat flux;Davies;Solid earth,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3