A Machine Learning Tutorial for Operational Meteorology. Part I: Traditional Machine Learning

Author:

Chase Randy J.123,Harrison David R.245,Burke Amanda23,Lackmann Gary M.6,McGovern Amy123

Affiliation:

1. a School of Computer Science, University of Oklahoma, Norman, Oklahoma

2. b School of Meteorology, University of Oklahoma, Norman, Oklahoma

3. c NSF AI Institute for Research on Trustworthy AI in Weather, Climate, and Coastal Oceanography, University of Oklahoma, Norman, Oklahoma

4. d Cooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, Oklahoma

5. e NOAA/NWS/Storm Prediction Center, Norman, Oklahoma

6. f Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina

Abstract

Abstract Recently, the use of machine learning in meteorology has increased greatly. While many machine learning methods are not new, university classes on machine learning are largely unavailable to meteorology students and are not required to become a meteorologist. The lack of formal instruction has contributed to perception that machine learning methods are “black boxes” and thus end-users are hesitant to apply the machine learning methods in their everyday workflow. To reduce the opaqueness of machine learning methods and lower hesitancy toward machine learning in meteorology, this paper provides a survey of some of the most common machine learning methods. A familiar meteorological example is used to contextualize the machine learning methods while also discussing machine learning topics using plain language. The following machine learning methods are demonstrated: linear regression, logistic regression, decision trees, random forest, gradient boosted decision trees, naïve Bayes, and support vector machines. Beyond discussing the different methods, the paper also contains discussions on the general machine learning process as well as best practices to enable readers to apply machine learning to their own datasets. Furthermore, all code (in the form of Jupyter notebooks and Google Colaboratory notebooks) used to make the examples in the paper is provided in an effort to catalyze the use of machine learning in meteorology.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3