Lake Inflow Simulation Using the Coupled Water Balance Method and Xin’anjiang Model in an Ungauged Stream of Chaohu Lake Basin, China

Author:

Li Zijun,Lei Xiaohui,Liao Weihong,Yang Qingchun,Cai Siyu,Wang Xiaoying,Wang Chao,Wang Jia

Abstract

Water resources are crucial for maintaining daily life and a healthy ecological environment. In order to gain a harmonious development among water resources and economic development in Lake Watershed, it is urgent to quantify the lake inflow. However, the calculation of inflow simulations is severely limited by the lack of information regarding river runoff. This paper attempts calculated inflow in an ungauged stream through use of the coupling water balance method and the Xin’anjiang model, applying it to calculate the inflow in the Chaohu Lake Basin, China. Results show that the coupled model has been proved to be robust in determining inflow in an ungauged stream. The error of daily inflow calculated by the water balance method is between 1.4 and −19.5%, which is within the standard error range (±20%). The calibration and verification results of the coupled model suggest that the simulation results are best in the high inflow year (2016), followed by the normal inflow year (2007) and the low inflow year (1978). The Nash-Sutcliffe efficiencies for high inflow year, normal inflow year, and low inflow year are 0.82, 0.72, and 0.63, respectively, all of which have reached a satisfactory level. Further, the annual lake inflow simulation in the normal inflow year is 19.4 × 108 m3, while the annual average land surface runoff of the study area is 18.9 × 108 m3, and the relative error is −2.6% by the two ways. These results of the coupled model offer a new way to calculate the inflow in lake/reservoir basins.

Funder

China Institute of Water Resources and Hydropower Research

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3