A comparison of simple and complex versions of the Xinanjiang hydrological model in predicting runoff in ungauged basins

Author:

Bai Peng1,Liu Xiaomang1,Liang Kang1,Liu Xiaojie1,Liu Changming1

Affiliation:

1. Key Laboratory of Water Cycle & Related Land Surface Process, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

Abstract

There are different views on the selection of hydrological model structural complexity for streamflow prediction in ungauged basins. Some studies suggest that complex models are better than simple models due to the former's prediction capability; whereas some studies favor parsimonious model structures to overcome a risk of over-parameterization. The Xinanjiang (XAJ) model, the most widely used hydrological model in China, has two different versions, as follows: (1) the simple version with seven parameters (XAJ7) and (2) the complex version with 14 parameters (XAJ14). In this study, the two versions of the XAJ model were comprehensively evaluated for streamflow prediction in ungauged basins based on their efficiency, parameter identifiability, and independence. The results showed that the complex XAJ14 model was more flexible than the simple XAJ7 in calibration mode; while the two models have similar performance in validation and regionalization modes. Lack of parameter identifiability and the presence of parameter interdependence most likely explain why the complex XAJ14 cannot consistently outperform the XAJ7 in different modes. Therefore, the simple XAJ7 is a better choice than XAJ14 for streamflow prediction in ungauged basins.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3