Insulator defect detection based on improved Yolov5s

Author:

Wei Dehong,Hu Bo,Shan Chaoyang,Liu Hanlin

Abstract

The stable operation of a power supply system is inseparable from the work of detecting defects in transmission lines. However, the insulator defect detection model based on deep learning is widely used in wire inspection work. Therefore, this paper proposes an improved YOLOv5s insulator defect detection model in order to solve the problems of insufficient training data and low recognition accuracy of the target detection model in the real-time detection of small target insulator defects. To expand and enhance the training data, experiments were conducted using the addition of noise and random black blocks. The spatial and channel weight coefficients were obtained by adding an attention mechanism (Convolutional Block Attention Module, CBAM), and the dimensions of the input feature maps were transformed to enhance the model’s ability to extract and fuse small target defect features. Experiments show that with Faster RCNN, YOLOv3, SSD and YOLOv4 comparison experiments verified that the algorithm achieves 97.38% detection accuracy for insulators and 93.32% detection accuracy for small target insulator defects with a fast detection speed, which is a better solution to the problem of detecting insulator defects with too small a proportion in the image.

Publisher

Frontiers Media SA

Reference28 articles.

1. Research on recognition method of electrical components based on YOLO V3;Chen;IEEE Access,2019

2. Insu-YOLO: an insulator defect detection algorithm based on multiscale feature fusion;Chen;J. Electron.,2023

3. Inspection of debonding defects of composite insulators by ultrasonic guide wave;Deng;High. Volt. Eng.,2019

4. High accuracy real-time insulator string defect detection method based on improved YOLOv5;Ding;Front. Energy Res.,2022

5. Insulator defect detection based on improved YOLOv5[C]//2021 5th asian conference on artificial intelligence technology (ACAIT);Gao;IEEE,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3