Improved insulator location and defect detection method based on GhostNet and YOLOv5s networks

Author:

Huang Jianjun12,Huang Xuhong123,Kang Ronghao12,Chen Zhihong12,Peng Junhan12

Affiliation:

1. School of Electronic, Electrical Engineering and Physics, Fujian University of Technology, Fuzhou 350118, China

2. Fujian Provincial Key Laboratory of Big Data Mining and Applications, Fujian University of Technology, Fuzhou 350011, China

3. National Demonstration Center for Experimental Electronic Information and Electrical Technology Education, Fujian University of Technology, Fuzhou 350108, China

Abstract

<p>Outdoor, real-time, and accurate detection of insulator defect locations can effectively avoid the occurrence of power grid security accidents. This paper proposes an improved GhostNet-YOLOv5s algorithm based on GhostNet and YOLOv5 models. First, the backbone feature extraction network of YOLOv5 was reconstructed with the lightweight GhostNet module to reduce the number of parameters and floating point operations of the model, so as to achieve the purpose of being lightweight. Then, a 160 × 160 feature layer was added to the YOLOv5 network to extract more feature information of small targets and fuzzy targets. In addition, the introduction of lightweight GSConv convolution in the neck network further reduced the computing cost of the entire network. Finally, Focal-EIoU was introduced to optimize the CIoU bounding box regression loss function in the original algorithm to improve the convergence speed and target location accuracy of the model. The experimental results show that the parameter number, computation amount, and model size of the GhostNet-YOLOv5s model are reduced by 40%, 25%, and 36%, respectively, compared with the unimproved YOLOv5s model. The proposed method not only ensures the precision of insulator defect detection, but also greatly decreases the complexity of the model. Therefore, the GhostNet-YOLOv5s algorithm can meet the requirements of real-time detection in complex outdoor environments.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3