Numerical Investigation on Interference of Multiple Hydraulic Fractures in Layered Formation

Author:

Li Zhichao,Wang Shuren,Li Lianchong,Zhang Jiyun

Abstract

Staged treatment in vertical wells is extensively applied in layered formation to obtain commercial exploitation of hydrocarbon resources. Large-sized heterogeneities always exist between multiple hydraulic fractures in different layers. To reveal the interference of multiple hydraulic fractures in layered formation, a series of numerical investigations were conducted based on the cohesive zone finite element method. The results show that the sole stress interference is too small to exert an effective impact on adjacent pay zones, which is quite different from those in horizontal wells. The flow distribution in one pay zone can reach 56.2%, which is more than five times the magnitude of the least 10.5% during the fracturing in three pay zones. The fracture size heterogeneities are mainly caused by the interference of the fluid flow into multiple perforation tunnels in different pay zones. To further clarify how the flow distribution in the pay zones is affected, five related factors, including perforating thickness, pay zone thickness, rock permeability, minimum horizontal stress of the pay zone, and rock strength, are analyzed. The results show that it is through the manner of flow distribution adjustment in each pay zone that the five factors affect the fracture size. This study is of critical importance to clarify how the multiple hydraulic fractures from vertical wells interfere in layered formation and explain why the hydraulic fractures we get in the field are far away from what we want ideally.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3