Effect of Geological Layer Properties on Hydraulic-Fracture Initiation and Propagation: An Experimental Study

Author:

AlTammar Murtadha J.1,Agrawal Shivam1,Sharma Mukul M.1

Affiliation:

1. University of Texas at Austin

Abstract

Summary Hydraulic-fracture initiation and propagation in the presence of multiple layers with different mechanical and flow properties are investigated experimentally using a novel fracturing cell. Mixtures of plaster, clay, and hydrostone are used to cast sheet-like and porous test specimens in layers with different configurations and properties. The layered specimens are hydraulically fractured under varying far-field differential stress. Fracture growth is recorded using a high-resolution digital camera. Key frames are subsequently analyzed using digital image correlation (DIC) to reveal microcracks, measure strains, and show other features such as shear-failure events that are difficult to detect with the naked eye. The problem of a hydraulic fracture induced in a soft layer bounded by harder layers is considered. We demonstrate numerous laboratory experiments that reveal a clear tendency for induced fractures to avoid harder bounding layers. This is seen as fracture deflection or kinking away from the harder layers, fracture curving between the harder bounding layers, and fracture tilt from the maximum far-field stress direction. These observations appear to be more pronounced as the contrast in Young's modulus and fracture toughness between the layers increases and/or the far-field differential stress decreases. Moreover, when a fracture is induced in a relatively thin layer, the fracture avoids the harder bounding layers by starting and propagating parallel to the bounding interfaces. Fracture propagation parallel to the bounding layers is also observed in relatively wide layers when the far-field stress is isotropic or very low. A fracture approaching a dipping, harder layer tends to curve away from the hard layer by kinking toward the high side of the interface. Nonplanar fracture trajectories are observed even in homogeneous materials when the far-field differential stress is relatively low. Furthermore, various other fracture behaviors in layered specimens are demonstrated and discussed, such as fracture offsetting at material interfaces, fracture branching and complex fracture trajectories, and shear failure of weakly bonded interfaces.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3