Modeling and analysis of hydraulic fracture complexity index in sandy conglomerate reservoirs based on genetic expression programming—A case study in Xinjiang Oilfield

Author:

Zhang Long,Wang Zhenhua,Xu Rui,Cheng Hao,Ren Lan,Lin Ran

Abstract

The stimulation effect of oil wells is seriously affected by the complexity of hydraulic fractures, and the analysis of the factors that control the fracture complexity index has become the key to fracturing design in sandy conglomerate reservoirs. Based on the intrinsic relationship between geological engineering parameters and the fractures complexity index, a Genetic Expression Programming (GEP) method, which has broad advantages in solving multi-factor nonlinear fitting and black-box prediction problems, is proposed to analyze the hydraulic fracture complexity index. Combined with the geoengineering factors that affect the hydraulic fractures propagation, a comprehensive index calculation method is established to analyze the relative importance of these features and 18 reconstructed features were obtained by collecting the geoengineering parameter data of 118 fracturing sections in 8 fracturing wells in Jinlong oilfield. The principal component analysis was performed to eliminate the interaction between the features, and then a GEP-based fractures complexity index calculation model was developed. The partial dependence plot is used to analyze the influence of the main control feature (variable) on the hydraulic fracture complexity index. It showed that GEP model can achieve satisfactory performance (Training set: R = 0.861; Test set: R = 0.817) by statistical parameters. The results showed that the model can calculate the hydraulic fracture complexity index quickly and precisely. The influence of geological engineering control factors can be obtained. It proved that the GEP method can effectively analyze and evaluate the complexity in sandy conglomerate reservoirs.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference28 articles.

1. Development and use of machine-learnt algebraic Reynolds stress models for enhanced prediction of wake mixing in low-pressure turbines;Akolekar;J. Turbomach.,2019

2. Validating hydraulic fracturing properties in reservoir simulation using artificial neural networks;BuKhamseen;SPE,2017

3. Pore-scale formation damage caused by fracturing fluids in low-permeability sandy conglomerate reservoirs;Cheng;J. Petroleum Sci. Eng.,2022

4. The relationship between fracture complexity, reservoir properties, and fracture treatment design;Cipolla,2008

5. Estimation of soil cation exchange capacity using genetic expression programming (GEP) and multivariate adaptive regression splines (MARS);Emamgolizadeh;J. Hydrology,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3