Author:
Song Zezhang,Ding Xiaoheng,Zhang Benjian,Ge Bingfei,Tian Xingwang,Chen Xiao,Ma Kui,Peng Hanlin,Wang Yunlong,Yang Dailin
Abstract
The evolution mechanism of hydrocarbons in ultra-deeply-buried and ultra-old strata is the core issue of petroleum geology moving towards Deep Earth. Reconstructing the evolutionary history of ultra-deeply-buried hydrocarbons is the key to shedding light on deep hydrocarbon accumulation and evolution mechanisms. Furthermore, it can help point out directions for oil and gas exploration in Deep Earth. Anyue gas field in the central Sichuan Basin is the Frontier of deep natural gas exploration in China. This study selected the natural gas reservoirs of the Upper Sinian Dengying Formation in the central Sichuan Basin as the research object. By integrating analysis of natural gas geochemical characteristics, source rock evaluation, reservoir bitumen-source correlation, inclusion analysis, one-dimensional and two-dimensional hydrocarbon accumulation simulations, the generation and evolution of hydrocarbons in different structural regions, namely the inherited paleo-uplift and slope area in central Sichuan Basin, have been dynamically restored and compared. The results show that: 1) The natural gas of the ultra-deeply-buried Sinian Dengying formation in central Sichuan is typical oil-cracking gas from the paleo-oil reservoir. The Sinian gas is mainly sourced from the Qiongzhusi/Maidiping Formation. 2) The formation of Sinian gas reservoirs includes three stages: the formation of paleo-oil-reservoirs; the cracking of paleo-oil-reservoirs into paleo-gas-reservoirs; the adjustment of the paleo-gas-reservoirs. 3) Source rock and reservoir evaluation, quantitative solid bitumen analysis, and hydrocarbon accumulation simulation show that the natural gas accumulation conditions in the slope area are better than in the inherited uplift area. The scale of the paleo-oil-reservoirs in the slope area may be greater than that in the inherited uplift area.
Subject
General Earth and Planetary Sciences
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献