Geochemical Characteristics of the Paleozoic Marine Source Rocks and Ultra-Deep Hydrocarbon Accumulation Mode of the Awati Sag

Author:

Song Zezhang12ORCID,Zhang Ziyu12,Ding Xiaoheng12,Zhang Yuanyin3,Bai Zhongkai3,Liu Lihong3,Gao Yongjin3

Affiliation:

1. National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum (Beijing), Beijing 102249, China

2. College of Geosciences, China University of Petroleum (Beijing), Beijing 102249, China

3. Oil & Gas Survey, China Geological Survey, Beijing 100083, China

Abstract

The Lower Paleozoic of the Awati Sag and its periphery is a region with relatively low levels of exploration and stands as a frontier for ultra-deep hydrocarbon exploration. Based on outcrop and core samples, this study integrated organic geochemical analysis, total organic carbon (TOC) logging interpretation, and one-dimensional and two-dimensional hydrocarbon accumulation simulations, to clarify the primary source rock of the Lower Paleozoic and its characteristics, as well as its hydrocarbon accumulation mode. The findings indicate the following: (1) The Lower Paleozoic features two sets of industrial source rocks. The Yuertusi Formation, with its considerable thickness (approximately 200 m), widespread distribution, and elevated TOC (averaging approximately 5% from experimental data and logging interpretation), stands out as the Lower Paleozoic’s most pivotal source rock. (2) The Yuertusi and Saergan Formations are in a high-to-over-mature stage, with the Yuertusi initiating oil generation in the early Silurian and transitioning to gas by the late Permian. The Saergan began producing oil in the Carboniferous, followed by gas in the late Permian. (3) The potential ultra-deep gas reservoirs in the Awati Sag are mainly distributed in the structural traps closer to the deep faults in five potential target formations. Deep natural gas typically exhibits mixed-source signatures, with the mixing notably pronounced along the Shajingzi Fault Belt due to influential basin-controlling faults.

Funder

National Natural Science Foundation of China

China University of Petroleum

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3