Did changes in terrigenous components of deep-sea cherts across the end-Triassic extinction relate to Central Atlantic magmatic province volcanism?

Author:

Ikeda Masayuki,Cho Tenichi,Bôle Maximilien

Abstract

The end-Triassic mass extinction event (ETE) is considered to be linked with the emplacement of the Central Atlantic magmatic province (CAMP), yet their temporal relation and underlying nature of global environmental and biotic changes remain controversial. A drastic radiolarian faunal turnover was associated with deep-sea acidification and changes in the chemical composition of pelagic terrigenous components, which were interpreted as the results of increased CAMP-derived materials, such as Fe2O3/Al2O3, MgO/Al2O3, and SiO2/Al2O3, without statistical tests. Here, we re-examined these CAMP-like signatures in terms of changes in the chemical composition of the Triassic–Jurassic pelagic deep-sea chert succession in Japan. Our newly compiled dataset suggests that changes in Fe2O3/Al2O3 and MgO/Al2O3 across the ETE were not significant, and thus, they may not be appropriate proxies for CAMP-derived material, potentially due to the dissolution of iron by ocean acidification and the formation of chlorite during diagenesis, respectively. Decreased SiO2/Al2O3 was also considered to have been reflected in increased CAMP-related dust flux and/or decreased biosiliceous productivity, but a slight increase in the Al2O3/TiO2 ratio (a biosiliceous productivity proxy) and an increase in shale bed thickness (dust flux proxy) across the radiolarian ETE imply increased eolian dust flux rather than decreased productivity. Furthermore, statistically significant Na enrichment at the radiolarian ETE level might be related to CAMP volcanism and/or associated changes in the source areas of eolian dust.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3