A study on the effect of site response on California seismic hazard map assessment

Author:

Gallahue Molly M.,Salditch Leah,Lucas Madeleine C.,Neely James,Stein Seth,Abrahamson Norman,Williams Tessa,Hough Susan E.

Abstract

Prior studies have repeatedly shown that probabilistic seismic hazard maps from several different countries predict higher shaking than that observed. Previous map assessments have not, however, considered the influence of site response on hazard. Seismologists have long acknowledged the influence of near-surface geology, in particular low-impedance sediment layers, on earthquake ground-motion at frequencies of engineering concern. Although the overall effects of site response are complex, modern ground-motion models (GMMs) account for site effects using terms based on VS30, the time-averaged shear-wave velocity in the upper 30 m of the Earth’s surface. In this study, we consider general implications of incorporating site terms from modern GMMs using site-specific VS30 as a proxy in probabilistic seismic hazard maps for California. At the long periods (1–5 s) that affect tall buildings, site terms amplify the mapped hazard by factors of 1–3 at many sites relative to maps calculated for the standard reference soft-rock site condition, VS30 = 760 m/s. However, at the short periods of ground-motion that are the main contributors to peak ground acceleration (PGA) and thus affect smaller structures, only negligible effects occur due to nonlinear deamplification of strong ground-motion at high frequencies. Nonlinear deamplification increases as the shaking level increases. For very strong shaking, deamplification can overcome the linear amplification, yielding net deamplification. We explore the implications of these results for the evaluation of hazard maps. Because site effects do not change the maps appreciably at short periods, we can exclude site response as an explanation for why the maps overpredict historically observed shaking as captured by the California Historical Intensity Mapping Project (CHIMP) dataset. The results are expected to be generalizable to regions that are comparable to California in terms of structure and seismicity rates. In low-to-moderate-seismicity regions where the hazard reflects weaker shaking, nonlinear site response is expected to be less important for the hazard.

Funder

U.S. Geological Survey

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3