Atmospheric recycling of agricultural evapotranspiration in the Tarim Basin

Author:

Shi Kaifang,Li Tiejian,Zhao Jie,Su Yang,Gao Jian,Li Jiaye

Abstract

Precipitation recycling, defined as that precipitation in a region is partially contributed by evapotranspiration from the same region, is the interaction between terrestrial hydrology and atmospheric processes, and plays a crucial role in forming water resources. For agricultural lands, the evapotranspiration of irrigation water alters local climate by reprecipitation in surrounding regions, which can also be analyzed from the viewpoint of precipitation recycling. As the largest endorheic basin in China, the Tarim Basin has strong precipitation recycling contributed by the surrounding mountains, as well as large irrigation areas producing high-quality cotton, which makes it an appropriate study case for the recycling of irrigation water. In this paper, we calculate the water vapor sources of precipitation (WSoP) and the reprecipitation of evapotranspiration (RPoET) in the Tarim Basin by using the Water Accounting Model—Two Layers, analyze their spatial distributions, and find the moisture recycling ratio of the basin as 15.4%. We set up comparative scenarios of evapotranspiration increase by irrigation areas in different locations of the Tarim Basin, and study their difference in reprecipitation and moisture recycling. Results show that the evapotranspiration increase in different locations has a marginal reprecipitation ratio ranging from 8% to 24%, and further boosts the whole basin’s moisture recycling ratio by 0.11%–0.29%. Significant difference among the scenarios proves that the location of irrigation areas affects the reprecipitation of its evapotranspiration, and the optimized moisture recycling can benefit water resource and ecosystem conditions inside the basin. In summary, this work would be useful to provide a practical basis for irrigation planning by considering the land-atmosphere interaction.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3