Hydrochemical and Isotopic Characteristics and the Spatiotemporal Differences of Surface Water and Groundwater in the Qaidam Basin, China

Author:

Yang Haijiao1234,Wei Jiahua12345ORCID,Shi Kaifang234

Affiliation:

1. School of Civil Engineering and Water Resources, Qinghai University, Xining 810016, China

2. State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China

3. Laboratory of Ecological Protection and High Quality Development in the Upper Yellow River, Xining 810016, China

4. Key Laboratory of Water Ecology Remediation and Protection at Headwater Regions of Big Rivers, Ministry of Water Resources, Xining 810016, China

5. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China

Abstract

In the context of climate change, precipitation and runoff in the arid inland basins of northwest China have undergone significant changes. The Qaidam Basin (QB) is a typical highland arid inland area. Understanding the spatial and temporal variations in surface water and groundwater chemistry and isotopes, as well as their causes, is crucial for future water resource management and ecological protection. Samples of river, lake, and groundwater, as well as others, were collected and tested in five typical watersheds in the summer and winter. The hydrochemistry and isotopic spatiotemporal differences in various water bodies were studied using the significant difference method, water vapor flux models, hydrochemistry, isotopes, and other methods for cause analyses. The results indicate the following: (1) There are differences in hydrochemistry between the southern and northern basins because the southern basin is more influenced by the dissolution of salt rocks and evaporation, whereas the northern basin is mainly affected by carbonate weathering. (2) The enrichment of δD and δ18O in the northern basin gradually increases from west to east, while in the southern basin, it is the opposite. This is because the southern basin receives a larger contribution of water vapor from the mid-latitude westerlies, while the northern basin primarily relies on local evaporation as its water vapor source. (3) Significant differences are observed in the total dissolved solids (TDS) and hydrochemical types of river water and groundwater between the summer and winter due to higher rates of rock weathering and evaporation in the summer. (4) The more pronounced seasonal differences in hydrogen and oxygen stable isotopes in the southern basin are due to higher rates of internal water vapor circulation in the summer. (5) The similarity in characteristics between river water and groundwater is the result of strong exchanges between river water and groundwater from piedmonts to terminals. The spatiotemporal heterogeneity of terminal lakes is attributed to the accumulation of salts and groundwater replenishment from other sources.

Funder

Major Science and Technology Project of Qinghai Province

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3