Discrimination of debris flow in narrow-steep type and wide-gentle type gullies in Wenchuan meizoseismal area

Author:

Xu Guoqing,Ji Jiejie,Luo Dengze,Qi Shunchao,Li Hongtao,Dembele Molobaly Dit Mahamadou,Yao Qiang

Abstract

The debris flow disasters in the Wenchuan meizoseismal area are dominantly triggered by the gully-type debris flow. Research on its classification method can be of great theoretical value and practical significance for developing targeted prevention measures. The current empirical classification method has some disadvantages, such as inconsistent discrimination criteria and poor practicability. In this paper, in order to overcome these drawbacks, the topography, rainfall, and source characteristics data of 176 gully-type debris flows in the Wenchuan “5.12” meizoseismal area since 2008 were collected and divided into the narrow-steep, transitional, and wide-gentle types based on field investigation. The narrow-steep type gullies are mainly concentrated in small catchments with severe erosion. In contrast, the wide-gentle type gullies are often characterized by big catchments, gentle vertical slopes, and debris flows movement dominated by deposition. An empirical discrimination method for debris flow gullies is proposed based on the characters of the gullies in the meizoseismal area, and a mathematical discrimination model named Gully Geomorphology Index (GGI) is also constructed. The results from existing cases indicated that both methods were accurate to discriminate between the narrow-steep and wide-gentle debris flow gullies. According to the empirical discrimination method, among the 176 channel-type debris flows, the numbers of narrow-steep, transitional, and wide-gentle channel types are 105 (59.66%), 12 (6.82%), and 59 (33.52%), respectively. While for the GGI method, the value 0.05 and 0.10 were defined as the threshold of the three types, and the distribution of the results is 104 (59.09%) for the narrow-steep type, 16 (9.09%) for the transitional type, and 56 (31.82%) for the narrow-steep type, which can better classify the transitional type gullies and is more practical. We hope that the discrimination methods proposed in this paper will help better understand the disaster-causing mechanism and improve the prevention measures of debris flow in the Wenchuan meizoseismal area.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3