Well log prediction while drilling using seismic impedance with an improved LSTM artificial neural networks

Author:

Wang Heng,Xu Yungui,Tang Shuhang,Wu Lei,Cao Weiping,Huang Xuri

Abstract

Well log prediction while drilling estimates the rock properties ahead of drilling bits. A reliable well log prediction is able to assist reservoir engineers in updating the geological models and adjusting the drilling strategy if necessary. This is of great significance in reducing the drilling risk and saving costs. Conventional interactive integration of geophysical data and geological understanding is the primary approach to realize well log prediction while drilling. In this paper, we propose a new artificial intelligence approach to make the well log prediction while drilling by integrating seismic impedance with three neural networks: LSTM, Bidirectional LSTM (Bi-LSTM), and Double Chain LSTM (DC-LSTM). The DC-LSTM is a new LSTM network proposed in this study while the other two are existing ones. These three networks are thoroughly adapted, compared, and tested to fit the artificial intelligent prediction process. The prediction approach can integrate not only seismic information of the sedimentary formation around the drilling bit but also the rock property changing trend through the upper and lower formations. The Bi-LSTM and the DC-LSTM networks achieve higher prediction accuracy than the LSTM network. Additionally, the DC-LSTM approach significantly promotes prediction efficiency by reducing the number of training parameters and saving computational time without compromising prediction accuracy. The field data application of the three networks, LSTM, Bi-LSTM, and DC-LSTM, demonstrates that prediction accuracy based on the Bi-LSTM and DC-LSTM is higher than that of the LSTM, and DC-LSTM has the highest efficiency overall.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3