Prediction of Buildings’ Settlement Induced by Metro Station Deep Foundation Pit Construction

Author:

Xu Shuting1,Xu Jinming1

Affiliation:

1. Department of Civil Engineering, Shanghai University, Shanghai 200444, China

Abstract

The construction of deep foundation pits in subway stations can affect the settlement of existing buildings adjacent to the pits to varying degrees. In this paper, the Long Short-Term Memory neural network prediction model of building settlement caused by deep foundation pit construction was established using the monitoring data of building settlement around a deep foundation pit project in a metro station in Shanghai, and appropriate hyperparameters including batch size and training set ratio were determined. The accuracy of settlement prediction for single-point and multi-point monitoring of buildings was analyzed. Meanwhile, the effects of construction parameters, engineering geological parameters, and spatial parameters on the accuracy of building settlement prediction were investigated. The results show that the batch size and training set proportion can be taken as 16 and 60%, respectively, when using the Long Short-Term Memory neural network prediction model. The proposed Long Short-Term Memory network model can stably predict the settlement of buildings adjacent to deep foundation pits. The accuracy of settlement prediction at a single point of a building (80%) is lower than the accuracy of coordinated prediction at multiple points (88%). More accurate settlement prediction is achieved with the total reverse construction method. The more detailed the consideration of working conditions, geological parameters, and spatial parameters, the better. The evaluation metrics of the prediction model, RMSE, MAE, and R2, were 0.57 mm, 0.65 mm, and 0.91, respectively. The results of this paper have some practical reference value for analyzing the settlement of buildings caused by foundation pit works.

Publisher

MDPI AG

Reference47 articles.

1. Humidity field characteristics in road embankment constructed with recycled construction wastes;Liu;J. Clean. Prod.,2020

2. Settlement prediction of foundation pit excavation based on the GWO-ELM model considering different states of influence;Qiao;Adv. Civ. Eng.,2021

3. Hybrid GA/SIMPLS as alternative regression model in dam deformation analysis;Xu;Eng. App. Art. Int.,2012

4. Numerical simulation of deep foundation pit dewatering and optimization of controlling land subsidence;Zhou;Eng. Geo.,2010

5. Forensic analysis of the failure of the foundations of a tunnel built to channel the course of a river;Gero;Eng. Fail. Anal.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3