Customization of a deep neural network using local data for seismic phase picking

Author:

Hong Yoontaek,Byun Ah-Hyun,Kim Seongryong,Sheen Dong-Hoon

Abstract

Deep-learning (DL) pickers have demonstrated superior performance in seismic phase picking compared to traditional pickers. DL pickers are extremely effective in processing large amounts of seismic data. Nevertheless, they encounter challenges when handling seismograms from different tectonic environments or source types, and even a slight change in the input waveform can considerably affect their consistency. Here, we fine-tuned a self-trained deep neural network picker using a small amount of local seismic data (26,875 three-component seismograms) recorded by regional seismic networks in South Korea. The self-trained model was developed using publicly available waveform datasets, comprising over two million three-component seismograms. The results revealed that the Korean-fine-tuned phase picker (KFpicker) effectively enhanced picking quality, even when applied to data that were not used during the fine-tuning process. When compared to the performance of the pre-trained model, this improvement was consistently observed regardless of variations in the positions of seismic phases in the input waveform, Furthermore, when the KFpicker predicted the phases for overlapping input windows and used the median value of probabilities as a threshold for phase detection, a considerable decrease was observed in the number of false picks. These findings indicate that fine-tuning a deep neural network using a small amount of local data can improve earthquake detection in the region of interest, while careful data augmentation can enhance the robustness of DL pickers against variations in the input window. The application of KFpicker to the 2016 Gyeongju earthquake sequence yielded approximately twice as many earthquakes compared to previous studies. Consequently, detailed and instantaneous statistical parameters of seismicity can be evaluated, making it possible to assess seismic hazard during an earthquake sequence.

Funder

Korea Meteorological Administration

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference56 articles.

1. Recurrent residual convolutional neural network based on U-Net (R2U-Net) for medical image segmentation AlomM. Z. HasanM. YakopcicC. TahaT. M. AsariV. K. 2018

2. Using a deep neural network and transfer learning to bridge scales for seismic phase picking;Chai;Geophys. Res. Lett.,2020

3. Notes on configuring binder_ew: earthworm’s phase associator DietzL. 2002

4. A comparative study on attenuation and source-scaling relations in the Kantō, Tokai, and Chubu regions of Japan, using data from Hi-net and KiK-net;Edwards;Bull. Seismol. Soc. Am.,2009

5. Performance of deep learning pickers in routine network processing applications;García;Seismol. Res. Lett.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3