Impact of three intense winter cyclones on the sea ice cover in the Barents Sea: A case study with a coupled regional climate model

Author:

Aue Lars,Röntgen Leonie,Dorn Wolfgang,Uotila Petteri,Vihma Timo,Spreen Gunnar,Rinke Annette

Abstract

We utilize a nudged simulation with the coupled regional atmosphere-ocean-sea ice model HIRHAM–NAOSIM over the Arctic to conduct an in-depth analysis of the impact of a sequence of three intense cyclones on the sea ice cover in the Barents and Kara Seas in February 2020. To clarify the underlying mechanisms we decompose changes in sea ice concentration (SIC) and thickness (SIT) into their dynamic and thermodynamic contributions and analyze them in concert with simulated changes in the wind forcing and the surface energy budget. Our findings reveal that changes in SIT during and after the cyclone passages are mostly driven by dynamic processes such as increased ice drift and deformation. With respect to SIC, the relative importance of dynamics and thermodynamics depends on the considered time scale and on the general conditions of the cyclone passages. If cyclones follow on each other in rapid succession, dynamic mechanisms dominate the SIC response for time scales of more than 2 weeks and thermodynamic effects via advection of warm-moist/cold-dry air masses on the cyclone’s front/back side only play a secondary role. However, if sufficiently long time elapses until the arrival of the next storm, thermodynamic SIC increase due to refreezing under the influence of cold and dry air at the backside of the cyclone becomes the dominating mechanism during the days following the cyclone passage.

Funder

Deutsche Forschungsgemeinschaft

Horizon 2020

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3