Spatio-temporal variability of small-scale leads based on helicopter maps of winter sea ice surface temperatures

Author:

Thielke Linda1ORCID,Spreen Gunnar1ORCID,Huntemann Marcus1,Murashkin Dmitrii12

Affiliation:

1. 1Institute of Environmental Physics, University of Bremen, Bremen, Germany

2. 2German Aerospace Center (DLR), Remote Sensing Technology Institute (IMF), Bremen, Germany

Abstract

Observations of sea ice surface temperature provide crucial information for studying Arctic climate, particularly during winter. We examined 1 m resolution surface temperature maps from 35 helicopter flights between October 2, 2019, and April 23, 2020, recorded during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC). The seasonal cycle of the average surface temperature spanned from 265.6 K on October 2, 2019, to 231.8 K on January 28, 2020. The surface temperature was affected by atmospheric changes and varied across scales. Leads in sea ice (cracks of open water) were of particular interest because they allow greater heat exchange between ocean and atmosphere than thick, snow-covered ice. Leads were classified by a temperature threshold. The lead area fraction varied between 0% and 4% with higher variability on the local (5–10 km) than regional scale (20–40 km). On the regional scale, it remained stable at 0–1% until mid-January, increasing afterward to 4%. Variability in the lead area is caused by sea ice dynamics (opening and closing of leads), as well as thermodynamics with ice growth (lead closing). We identified lead orientation distributions, which varied between different flights but mostly showed one prominent orientation peak. The lead width distribution followed a power law with a negative exponent of 2.63, which is in the range of exponents identified in other studies, demonstrating the comparability to other data sets and extending the existing power law relationship to smaller scales down to 3 m. The appearance of many more narrow leads than wide leads is important, as narrow leads are not resolved by current thermal infrared satellite observations. Such small-scale lead statistics are essential for Arctic climate investigations because the ocean–atmosphere heat exchange does not scale linearly with lead width and is larger for narrower leads.

Publisher

University of California Press

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling the Winter Heat Conduction Through the Sea Ice System During MOSAiC;Geophysical Research Letters;2024-04-17

2. Arctic Wintertime Sea Ice Lead Detection From Sentinel-1 SAR Images;IEEE Transactions on Geoscience and Remote Sensing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3