Oil and gas prediction basing on seismic inversion of elastic properties in Chaoshan depression, south China sea

Author:

Guangjian Zhong,Zhongquan Zhao,Guanghong Tu,Kangshou Zhang,Jing Zhao,Hai Yi,Changmao Feng,Junhui Yu

Abstract

The marine Mesozoic is widely distributed in the northeastern waters of the South China Sea and is an important field for oil-gas exploration in the South China Sea. The Chaoshan Depression is the largest residual depression in this sea. At a previous well, LF35-1-1, no oil and gas have been discovered with then pre-drilling prediction techniques. Post-drill analysis shows that the physical properties of the Mesozoic reservoir are not favorable there. So, in accurate prediction of the oil-gas reservoirs is necessary. Since the drilling at the LF35-1-1, extensive surveys and studies have been carried out which shows a number of favorable trapping structures. In the middle low bulge of the Chaoshan Depression, the DS-A structures found with potential reservoirs, complete trap structures, and dual source hydrocarbon supply on both sides, making it the most favorable zone for oil-gas accumulation. We apply the state of art prediction techniques for it using pre-stack seismic raw gather. The sensitivity analysis results of reservoir physical properties indicate that the difference in P- wave velocity between sand and mudstone is 500 m/s, the difference in density is 0.02 g/cm3, and the Poisson’s ratio ranges between 0.11 and 0.33. The Mesozoic sandstone reservoirs in the Chaoshan Depression have characteristics of high velocity and low Poisson’s ratio, and the P-wave velocity, density, and Poisson’s ratio are the main sensitive parameters for predicting reservoir and its oil-gas bearing properties. The density inversion, P-wave impedance inversion, and S-wave impedance inversion jointly characterize the “wedge-shaped” sand body in the DS-A structural area, with a maximum thickness of over 400 m and an area of ∼130 km2. The overlap of the sand body contour map and Poisson’s ratio inversion results indicates that the “wedge-shaped” sand body is an oil-gas bearing sand body. It can be concluded that pre-stack elastic parameter inversion is an effective method for reservoir prediction in deep-sea no-well exploration areas. It has the characteristics of high signal-to-noise ratio, strong stability and reliability, and high accuracy, which is conducive to reduce the non-uniqueness and uncertainty of seismic inversion. The inversion results predict that the DS-A structure is an oil-gas bearing structure.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference48 articles.

1. Seismic facies and sedimentary facies study of Mesozoic in Chaoshan sag;Duan;Resour. Industries,2012

2. Detection of gas in sandstone reservoirs using AVO analysis: A 3-D seismic case history using the geostack technique;Fatti;Geophysics,1994

3. Formation velocity and density; the diagnostic basics for stratigraphic traps;Gardner;Geophysics,1974

4. PS converted-wave AVO;Gray;Seg. Tech. Program Expand. Abstr.,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3