Fault locking of the Qilian–Haiyuan fault zone before the 2022 Menyuan Ms6.9 earthquake and its seismic hazards in the future

Author:

Liu Lei,Zhuang Wenquan,Ji Lingyun,Zhu Liangyu,Jiang Fengyun

Abstract

By using GPS-derived velocities of 2015–2021 and a negative dislocation program, we inverted the locking degree and slip rate deficit in the Qilian–Haiyuan fault zone, and combined with the distribution of small earthquakes in the fault, we studied the characteristics before the 2022 Menyuan MS6.9 earthquake and analyzed the future seismic hazards of each segment within this fault zone. The regional crustal deformation pattern is discussed with regard to the fault slip rate and regional strain rate field. The preliminary results show that before the earthquake, the seismogenic fault was strong locked, with a high locking depth, the slip rate deficit was large, and the distribution of small earthquakes was relatively few, these characteristics are closely related to the occurrence of strong earthquakes, according to the aftershock relocation results, further, it is believed that the earthquake may link the Lenglongling and Tuolaishan faults into a large strike-slip fault. The Jinqianghe fault, the Lenglongling fault, and the eastern segment of the Tuolaishan fault are strongly locked, with high locking depth and large slip rate deficit, combined with the occurrence of small earthquakes and the locking degree before the 2022 Menyuan MS6.9 earthquake, indicate that the eastern segment of the Tuolaishan fault is highly likely to have strong earthquakes in the future, which requires further attention. In addition, the strike-slip rate of the Qilian–Haiyuan fault zone is mainly between 3.9 and 4.3 mm/yr, the overall movement of the fault is consistent, and the compressional rate gradually decreases from 2.9 mm/yr in the western segment to 1 mm/yr in the eastern segment; the fault compressional rate may be related to the crustal shortening (formation basin and uplift mountain). Therefore, the present-day crustal deformation in the northeastern margin of the Tibetan Plateau is mainly distributed in the shortened region of the crust on the Qilian Shan area and left-lateral strike-slip localized on the Qilian–Haiyuan fault zone.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3