The 8 January 2022, Menyuan Earthquake in Qinghai, China: A Representative Event in the Qilian-Haiyuan Fault Zone Observed Using Sentinel-1 SAR Images

Author:

Zhu Liangyu,Ji Lingyun,Liu ChuanjinORCID,Xu Jing,Liu Xinkai,Liu Lei,Zhao Qiang

Abstract

On 8 January 2022, a Ms 6.9 earthquake occurred in Menyuan, Qinghai, China. This event provided important geodetic data before and after the earthquake, facilitating the investigation of the slip balance along the seismogenic faults to understand seismogenic behavior and assess seismic risk. In this study, we obtained the interseismic (2016–2021) and coseismic deformation fields of the 2022 earthquake using Sentinel-1 synthetic aperture radar (SAR) images and estimated the slip rate, fault locking, and coseismic slip of the seismogenic faults. The results indicated that the seismogenic fault of the 2022 Menyuan earthquake, i.e., the Tuolaishan–Lenglongling Fault, had shallow locked areas before the earthquake; its long-term slip rate could reach 6 ± 1.2 mm/yr. The earthquake ruptured a sinistral strike-slip fault with a high dip angle; the maximum slip magnitude reached 3.47 m, with a moment magnitude of 6.6. The area of coseismic slip > 1.5 m was equivalent to the range of the isoline, with a locking value of 0.6. The interseismic locking region can limit the approximate scope of the coseismic slip distribution. The 2022 Menyuan earthquake released energy that had accumulated over 482 years in the stepover region between the Lenglongling and Tuolaishan faults. The accumulated elastic strain power of the Tuolaishan Fault was equivalent to an Mw 6.79 earthquake. These circumstances in terms of the strain energy balance demonstrate that interseismic locking, as constrained from the geodetic data, and the elapsed time from the previous paleoseismic event are useful for earthquake location and energy predictions.

Funder

Jilin Changbaishan Volcano National Observation and Research Station

National Natural Science Foundation of China

China Earthquake Administration

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3